Lax Formal Theory of Monads, Monoidal Approach to Bicategorical Structures and Generalized Operads
نویسنده
چکیده
Generalized operads, also called generalized multicategories and T -monoids, are defined as monads within a Kleisli bicategory. With or without emphasizing their monoidal nature, generalized operads have been considered by numerous authors in different contexts, with examples including symmetric multicategories, topological spaces, globular operads and Lawvere theories. In this paper we study functoriality of the Kleisli construction, and correspondingly that of generalized operads. Motivated by this problem we develop a lax version of the formal theory of monads, and study its connection to bicategorical structures.
منابع مشابه
5 M ar 2 00 8 Algebras of higher operads as enriched categories
We decribe the correspondence between normalised ω-operads in the sense of [1] and certain lax monoidal structures on the category of globular sets. As with ordinary monoidal categories, one has a notion of category enriched in a lax monoidal category. Within the aforementioned correspondence, we provide also an equivalence between the algebras of a given normalised ωoperad, and categories enri...
متن کاملA Unified Framework for Generalized Multicategories
Notions of generalized multicategory have been defined in numerous contexts throughout the literature, and include such diverse examples as symmetric multicategories, globular operads, Lawvere theories, and topological spaces. In each case, generalized multicategories are defined as the “lax algebras” or “Kleisli monoids” relative to a “monad” on a bicategory. However, the meanings of these wor...
متن کاملOperads as Polynomial 2-monads
In this article we give a construction of a polynomial 2-monad from an operad and describe the algebras of the 2-monads which then arise. This construction is different from the standard construction of a monad from an operad in that the algebras of our associated 2-monad are the categorified algebras of the original operad. Moreover it enables us to characterise operads as categorical polynomi...
متن کاملA cottage industry of lax extensions
In this work, we describe an adjunction between the comma category of Set-based monads under the V -powerset monad and the category of associative lax extensions of Set-based monads to the category of V -relations. In the process, we give a general construction of the Kleisli extension of a monad to the category of V-relations.
متن کاملClassifying Spaces for Braided Monoidal Categories and Lax Diagrams of Bicategories
This work contributes to clarifying several relationships between certain higher categorical structures and the homotopy type of their classifying spaces. Bicategories (in particular monoidal categories) have well understood simple geometric realizations, and we here deal with homotopy types represented by lax diagrams of bicategories, that is, lax functors to the tricategory of bicategories. I...
متن کامل